Prof. Dr. Peter Koepke, Dr. Philipp Schlicht	Problem sheet 3
--	-----------------

Problem 9 (4 Points). A forcing $\mathbb{P} = (\mathbb{P}, \leq)$ is κ -distributive if the following condition holds: if $(U_{\alpha})_{\alpha < \kappa}$ is a sequence of open dense subsets of \mathbb{P} , then $\bigcap_{\alpha < \kappa} U_{\alpha}$ is dense in \mathbb{P} . Suppose that M is a ground model, $(\mathbb{P}, \leq) \in M$ is a partial order, and κ is an infinite regular cardinal in M such that

 $M \models "(\mathbb{P}, \leq)$ is κ -distributive".

Suppose that G is \mathbb{P} -generic over M. Show that $f \in M$ for every function $f \colon \kappa \to M$ with $f \in M[G]$.

- **Problem 10** (4 Points). (a) Prove that $\mathbb{P} \times \mathbb{Q}$ is Knaster if \mathbb{P} and \mathbb{Q} are Knaster.
 - (b) Prove from MA_{ω_1} that $\mathbb{P} \times \mathbb{Q}$ is c.c.c if and only if \mathbb{P} and \mathbb{Q} are c.c.c.

Problem 11 (6 Points). Suppose that κ is an uncountable regular cardinal. Suppose that \mathbb{P} is κ -closed and $\hat{\mathbb{Q}}$ is a \mathbb{P} -name such that $1_{\mathbb{P}} \Vdash "\hat{\mathbb{Q}}$ is $\check{\kappa}$ -closed". Show that $\mathbb{P} * \hat{\mathbb{Q}}$ is κ -closed.

Problem 12 (6 Points). Suppose that M is a ground model. Suppose that

$$(\mathbb{P}_n, \leq_n, 1_{\mathbb{P}_n}, \mathbb{Q}_m, \leq_m)_{m < \omega, n \leq \omega}$$

is a finite support iteration in M with $\mathbb{P}_0 = Col(\omega, \omega_1)$ and $\mathbb{1}_{\mathbb{P}_n} \Vdash_{\mathbb{P}_n} \dot{\mathbb{Q}}_n = Col(\omega, \omega_1)$ for all $n < \omega$. Suppose that G is \mathbb{P}_{ω} -generic over M. Decide which infinite cardinals κ of M are cardinals in M[G].

Please hand in your solutions on Monday, November 11 before the lecture.